4. The Basic Proof M ethod

From*“ Verification, Validation, and Evaluation of Expert Systems, Volume|”

This chapter provides an overview of the basic method for forma proofs:

Partition larger systemsinto small systems.
Prove correctness on small systems by non-recursive means.
Prove that the correctness of al these subsystems implies the correctness of the entire system.

Introduction

An expert system is correct when it is complete, consstent, and satisfies the requirements that express
expert knowledge about how the system should behave.

For real-world knowledge bases containing hundreds of rules, however, these aspects of correctness
are hard to establish. There may be millions of distinct computationa paths through an expert system,
and each must be dedlt with through testing or formal proof to establish correctness.

To reduce the Size of the tests and proofs, one useful approach for some knowledge basesisto
partition them into two or more interrelated knowledge bases. In thisway the VV & E problem can be
minimized.

Overview of Proofs Using Partitions

The basic method of proving each of these aspects of correctnessisbasicdly the same. If the system is
smdll, atechnique designed for proving correctness of smal systems should be used. If the system is
large, atechnique for partitioning the expert system must be applied and the required conditions for
applying the partition to the system as awhole should be proven. In addition the correctness of any
subsystem required by the partition must be ensured. Once this has been accomplished this basic proof
method should be applied recursively to the subexpert systems.

To carry out a partitioning of an expert system, one generally requires expert knowledge to define the
top level problem-solving strategy of the expert system. In Chapter 7, "Knowledge Moddling”, a
number of knowledge representations are outlined that may be useful in formalizing the top level
structure of the knowledge base. Through knowledge acquisition with one or more expert, the top
level structure of the knowledge base should be represented in a knowledge modd. The correctness of
this knowledge modd should be validated with other experts or with standard reference materidsin the
target domain (the section in Chapter 9, on Vdidating the Semantic Consistency of Underlying
Knowledge Items, addresses the problem of validating expert knowledge). When the formalization of
the top level knowledge base has been so vaidated, the fact that the knowledge base has the vaidated
structure can, from the standpoint of aforma proof, be assumed.

Oncethetop level structure of the knowledge base has been validated, to show the correctness of the
expert system, the following criteriamust be accomplished:
Show that the knowledge base and inference engine implement the top level structure.

Prove any required relationships among sub-expert systems or parts of the top level knowledge
representation.

Prove any required properties of the sub-knowledge bases.

Chapter 7, "Knowledge Modeling”, discusses what exactly must be proved for various knowledge
models and for various aspects of the correctness problem.

A Smple Example

To illugtrate the basic proof method, Knowledge Base 1 will be proved correct in Figure 5.1. Although
this knowledge base is smal enough to verify by inspection, the proof will be carried out in detail to
illustrate the proof method.

Knowledge Base 1

Rule1: If "Risk tolerance" = high
AND "Discretionary income exists' = yes
then investment = stocks.

Rule2: If "Risk tolerance’ = low
OR "Discretionary income exists' = no
then investment = "bank account".

Rule 3: If "Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes
then "Risk tolerance” = high.

Rule 4: If "Do you buy lottery tickets' = no
AND "Do you currently own stocks' = no
then "Risk tolerance” = low.

Rule5: If "Do you own aboat" = yes
OR "Do you own aluxury car" = yes
then "Discretionary income exists' = yes.

Rule6: If "Do you own aboat" = no
AND "Do you own aluxury car" = no

then "Discretionary income exists' = no.

Figure4.1: KnowledgeBase1

Sep 1 -- Determine Knowledge Base Sructure

To prove the correctness of Knowledge Base 1 (KB1), the expert knowledge can determine that the
System represents a 2-step process:

1. Find the values of some important intermediate variables, such as risk tolerance and discretionary
income.

2. Usethese vduesto assgn atype of investment.

KB1 was built using this knowledge; therefore, it can be partitioned into the following pieces:

A subsystem to find risk tolerance (part of Step 1).

A subsystem to find discretionary income (part of Step 1).

A subsystem to find type of investment given thisinformation (part of Step 2).
To prove the correctness of a multi-step system, it must be proved that Step 1 satisfies the following
criteria

For each st of inputs, al the outputs required by Step 2 are dways produced by Step 1.

For each st of inputs, al the outputs of Step 1 are single-valued.

The correct outputs of Step 1 are assigned to each possible set of inputs.

It must aso be proved for Step 2 that:

For each set of inputs and computed Step 1 outputs, Step 2 produces some output.
For each set of inputs and Step 1 outputs, all the outputs of Step 2 are single-valued.

The correct outputs of Step 2 are assigned to each possible set of inputs and computed Step 2
outputs.

Sep 2 -- Find Knowledge Base Partitions
To find each of the three subsystems of KB1, an iterative procedure can be followed:

1. Start with the variables that are gods for the subsystem, e.g., risk tolerance for the risk tolerance
subsystem.

2. Include al the rules that set subsystem variables in their conclusons. For the risk tolerance
subsystem, Rules 3 and 4 are included.

3. Include dl variables that appeared in rules dready in the subsystem and are not gods of another
subsystem.

4. For therisk tolerance subsystem, include "Do you buy lottery tickets' and "Do you
currently own stocks'.

5. Quit if dl rules setting subsystem variables are in the subsystem, or else go to Step 2. For the risk

tolerance subsystem, there are no more rulesto be added.

Figure 4.2 below shows the partitioning of KB1 using this method.

e I INVESTMENT !
| DISC. INCOME | Q) !
| (D) | |
\ \
| | |
\ | \ | \
‘ YES ; ‘ ; ‘
LT = m
NO | H

| Y= |
1 YES N ‘ ‘ ‘ ‘ L

ST= M
| NO | | | |
‘ ‘ ‘ Bank Account ‘ | <:0r
| | | | | | <« AND
RULES 34 1,2

(RT)

YES

NO

YES

RISK TOLERANCE

= Boat

= Lux. Car
o]

Figure 4.2 An Example of Knowledge Base Partitioning

Sep 3 -- Completeness of Expert Systems

Completeness Step 1 -- Completeness of Subsystems

The firgt step in proving the completeness of the entire expert system isto prove the compl eteness of
each subsystem. To thisend it must be shown that for all possible inputs there is an output, i.e., the
god variables of the subsystem are set. This can be done by showing that the OR of the hypotheses of

the rulesthat assign to agod variable istrue.

For example, the discretionary subsystem of KB1 will be shown to be complete. The discretionary

subsystem conssts of theserules:
Rule5: If "Doyou own aboat" = yes
OR "Do you own aluxury car" = yes

then "Discretionary income exists' = yes.

Rule6: If "Do you own aboat" = no
AND "Do you own aluxury ca = no
then "Discretionary income exists' = no.
Step 3.1 Thefirst step isto form the OR of the possible outputs of the system:
"Discretionary income exidts' = yes 4.1)
OR "Discretionary income exists' = no
(4.1) expresses the condition under which some conclusion is reached.

Step 3.2: For each output condition in (4.1), the user subgtitutes the OR of rule hypotheses for rules
that imply that condition. For example, for

"Discretionary income exists' = yes 4.2
the only ruleinferring (4.2) isRule 5; its hypothesisis.
"Do you own aboat" = yes 4.3
OR "Do you own aluxury car" = yes
Sincethisisthe only rule concluding (4.2), (4.3) isthe OR of rule hypotheses implying (4.2).

Making the subgtitution of (4.3) for (4.2) in (4.1), and asimilar substitution for:

"Discretionary income exists' = no (4.9
theresaultis:
("Do you own aboat" = yes (4.5)

OR "Do you own aluxury car" = yes)
OR

("Do you own aboat" = no

AND "Do you own aluxury car" = no)

Step 3.3: Continue substitutions of the OR of rule hypotheses for inferred propositions (4.5) until the
user obtains an expression where only input variables gppear. Infact, (4.5) dready contains only input
variables, and no further substitutions are needed.

Step 3.4: Apply Boolean dgebrato smplify the expresson from Step 3; the god isto show that the
Step 3 expression aways has the truth vaue TRUE.

6

Letting:

A ="Do you own aboat" = yes

B ="Do you own aluxury car" = yes
(4.5) can berewritten as:

(A orB) or (Not A and Not B) (4.6)
Simplifying thisgives.

(A or B) or (Not A and Not B)

=(A orBorNotA)and (A or B or Not B)

= true and true

=true
This means that the OR of conditions that imply some conclusion istrue.
Completeness Step 2 -- Completeness of the Entire System

The results of subsystem completeness are used to establish the completeness of the entire system. The
basic argument isto use results on subsystems to prove that successively larger subsystems are
complete. At each stage of the proof there are some subsystems known to be complete; initialy the
subsystem that concludes overadl gods of the expert system will be complete. At each stage of the
proof, a subsystem that concludes some of the input variables of the currently-proved-complete
subsystem is added to the currently complete subsystem. After a number of steps equa to the number
of subsystems, the entire system can be shown to be complete.

When a complete subsystem that sets input variables of the currently complete subsystem is added to
the latter, the augmented subsystem is complete. Any input to the augmented subsystem can be divided
into aset V1 of input variables for the unaugmented system and a set V2 for the newly added
subsystem. Note that some variables may be in both of these sets. Since the newly added subset is
complete, given V1, that subsystem produces output O1. However, O1 union V2 isan input for the
unaugmented system, which, because of its completeness, produces an output showing that the
augmented system is complete.

Since the number of subsystemsisfinite, the process of augmentation ceases after a finite number of
geps. By mathematical induction, usng asmilar argument to that of the previous paragraph, it
follows that the entire system is complete.

For KB1, thisresult can be gpplied, or dternatively make the following specific argument: Inputsto
the system as awhole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems. Each of these is complete, and so produces arisk tolerance and discretionary income
respectively. These are inputs to the investment subsystem itsonly inputs. Since the investment

7

subsystem is complete it produces an investment. So an output for the entire system exists for each
input, and the system as awhole is complete.

Sep 4 -- Consstency of the entire system

Thefirst gtep in proving the consstency of the entire expert system isto prove the consistency of each
subsystem. To do this, the user must show that for al possible inputs, the outputs are consgtent, i.e.,
that the AND of the conclusions can be satisfied.

For example, if an expert system concludes "temperature > 0" and "temperature < 100", the AND of
these conclusions can be satisfied. However, if the system concludes, "temperature < 0" and
"temperature > 100", the AND of these two conclusonshasto befdse. Itisclear that based on the
input that produced these two conclusions, it isnot possible for al of the system's conclusionsto be
true at the same time and thus the system producing these conclusions isinconsistent.

Congstency Step 1 -- Find the M utually Inconsstent Conclusions

Thefirst step in proving consstency isto identify those sets of mutually inconsistent conclusions for
each of the subsystems identified in the "Find partitions’ step above.

Some sets of conclusions are mathematically inconsistent. For example, if a system describes
temperature, the set:

{"temperature < 0", "temperature > 100"}
is mathematicaly incongstent.

However, other conclusion sets that are not mathematically inconsistent may be inconsistent based on
domain expertise. For example, one investment advisor expert system could be designed to
recommend severd types of investments to each investor (probably not abad ideg). For such asystem,
"investment = stocks' AND "investment = bank account” are not inconsistent; stocks and bank
accounts are just two of the investments recommended for some investor. However, if the system
were designed to recommend only one investment per investor, "investment = stocks' AND
"investment = bank account” would be interpreted as a contradiction, and the system recommending
this would be inconsistent.

Because some sets of conclusions are inconsistent because of domain expertise, finding al sets of
inconsistent conclusions generdly requires expert knowledge.

Notethat if there are no mutualy inconsistent conclusions in the expert system as awhole, then
congstency istrue by default, and no further consistency proof is necessary.

Congstency Step 2 -- Prove Consstency of Subsystems

If there are inconsistent conclusions in the knowledge base as awhole, then the next step in proving
congstency isto prove the subsystems consistent. This can be done by showing that no set of inputsto
asubsystem can result in any of the sets of inconsstent conclusions. For each set of incons stent

conclusions, the user can congtruct, as detailed below, a Boolean expression B that represents al the
conditions under which that set of inconsistent conclusions would be proved by the subsystem. If that
Boolean expression can be shown to be FAL SE, there are no such conditions.

Now the construction of the Boolean expression B to be proved false will be described. Let
S={Cj1,..,Cn}

be a set of potentialy incongstent conclusions for one of the subsystems.

B will be constructed by a backward chaining process, starting with
BO=C1AND .. AND Cn

Let Ci beone of the Cs. For dl rulesthat conclude Ci, construct the OR of these rulesinitia
conditions. Then substitute the resulting expression into BO.

Continue these substitutions until an expression results that has only the inputs to the expert subsystem.
For each atomic Boolean expression A that is the conclusion of arule in the subsystem, substitute the
OR of theruleif parts of rulesthat conclude A. After at most afinite number of such substitutions, the
user obtains an expression that states when al the C' swould be true in terms of the input variables of
the subsystem.

For the risk subsystem, the only inconsistent set of rule conclusionsis:
S={ "Rik tolerance" = high and "Risk tolerance" = low }

The only initid conditionsfor "Risk tolerance" = high isfrom Rule 3:
"Do you buy lottery tickets' = yes
OR "Do you currently own stocks' = yes

and the only initid conditionsfor "Risk tolerance" = low isfrom Rule 4
"Do you buy lottery tickets' =no

AND "Do you currently own stocks' = no

Let:
A0 = ("Doyou buy lottery tickets' = yes)
Al = ("Doyou currently own stocks' = yes).
Thismeans

not AO = ("Do you buy lottery tickets' = no)

not Al = ("Do you currently own stocks' = no).
Using this notation:
BO=(AOOR A1) AND (NOT AOAND NOT A1)

For this smal subsystem, BO is actually expressed in terms of inputs to the subsystem (i.e,, BOis
actudly B).

Digtributing the top level AND over the OR,
BO=(A0AND (NOT AOAND NOT Al))
OR (A1 AND (NOT AOAND NQOT Al))

The first subexpression is FALSE because it contains AO AND NOT AOQ. Likewise, the second is
FALSE becauseit contains A1 AND NOT A1l. Therefore, BO is FALSE becauseit isthe OR of only
FALSE expressons.

Congstency Step 3 -- Consstency of the Entire System

The results of subsystem consistency are used to establish the consstency of the entire system. The
basic argument isto use results on subsystems to prove that successively larger subsystems are
congstent. At each stage of the proof, there are some subsystem known to be consistent; initidly, this
is the subsystem that concludes goals of the expert system asawhole. At each stage of the proof, a
subsystem that concludes some of the input variables of the currently-proved-consistent subsystem is
added to the currently consistent subsystem. After a number of steps equd to the number of
subsystems, the entire system can be shown to be consstent.

When a congstent subsystem that sets input variables of the currently consistent subsystem is added to
the currently consistent subsystem, the augmented subsystem is consstent. Any input to the
augmented subsystem can be divided into aset V1 of input variables for the unaugmented system and a
set V2 for the newly added subsystem. Note that some variables may be in both of these sets. Since
the newly added subset is consistent, given V1, that subsystem produces and output O1. However, O1
union V2 isan input for the unaugmented system producing output due to its conastency. This shows
that the augmented system is consistent.

Since the number of subsystems isfinite the process of augmentation ceases after afinite number of
seps. By mathematica induction, using the above mentioned argument, it follows that the entire
system is cons gtent.

For KB1, one can apply the result, or dternatively make the following specific argument: Inputsto the
system as awhole can be partitioned into inputs for the risk tolerance and the discretionary income
subsystems. Each of theseis congstent, and so produces a consstent set of risk tolerance and
discretionary incomes, respectively. These are inputs to the investment subsystem, and are that
sysem'sonly inputs. Since the investment subsystem is consistent, it produces a consstent investment.
Thus an output for the entire system exigts for each input, and the system as awhole is cons stent.

10

The other subsystems of KB1 can be proved consigtent in the same way.
Sep 5 -- Soecification Satisfaction

In order to prove that KB1 satisfies its specifications, the user must actualy know what its
gpecificationsare. Thisisaspecia case of the generd truth that in order to verify and validate, the user
must know what asystem is supposed to do. Specifications should be defined in the planning stage of
an expert system project.

To illugtrate the proof of specificationsit will be assumed that KB1 is supposed to satisfy:
A financia advisor should only recommend investments that an investor can afford.

Aswith many other aspects of verification and vaidation, expert knowledge must be brought to bear
on the proof process. For KB1, an expert might say that anyone can afford a savings account.
Therefore, the user only hasto look at the conditions under which stocks are recommended. However,
that same expert would probably say that just having discretionary income does not mean that the user
can afford stocks; that judgment should be made on more than one variable. Therefore, it would be
reasonable to conclude that KB1 does not satisfy the above specification.

However, if the expert does agree that the expert system observes dl necessary inputs, one must use
inputs to the expert system to express a specification. For KB1, this means that the specification is
reexpressed as.

KB1 recommends stocks only when there is discretionary income.
The user can prove thisfor the investment subsystem by assuming:

NOT discretionary income
and proving:

NOT stocks

The only rule that concludes stocks has "discretionary income" = yesin an AND inits"if" part.
Therefore, the investment system satisfies the specification.

To prove the entire system satisfies the specifications, the user must look at the conditions under which
"discretionary income' = yesis concluded from inputs for the system asawhole. A financid expert
would surely say that owning aluxury car or boat does not mean that discretionary income actualy
exists and the system as awhole falls the specification, an expected outcome of asmall example system
tackling a complex subject.

11

